(+)-4-HYDROXYSARCOCAPNINE: STRUCTURE AND STEREOCHEMICAL CONSIDERATIONS L. Castedo, D. Domínguez, A. R. de Lera and E. Tojo

Departamento de Química Orgánica de la Facultad de Química e Instituto de Productos Naturales Orgánicos (Sección Alcaloides) del C.S.I.C., Santiago (SPAIN)

Summary: (+)-4-Hydroxysarcocapnine obtained from Sarcocapnos enneaphylla(L.)DC.has been shown by spectral studies and synthesis to possess the new 4-hydroxyisocularine structure(1a). Straightforward assignment of the configuration of a 4-hydroxycularine by NMR is also discussed.

Our current studies on the alkaloids of the Fumariaceae¹, have led us to the isolation from Sarcocapnos enneaphylla(L.) DC of the first 4-hydroxyisocularine, (+)-4-hydroxysarcocapnine 1a. This alkaloid and the recently described 4-hydroxycularine, (+)-limousamine 1c², are the only known cularine alkaloids bearing a hydroxyl group at C-4.

Structure <u>1a</u> for (+)-4-hydroxysarcocapnine |mp| 145-146°C(EtOH), $|\alpha|_{D}$ +314°(c 0.11,CHCl₃), was established on the basis of spectroscopic and chemical evidence. Its UV showed absorptions at λ_{max}^{EtOH} (log ε):218(4.26),230(sh,4.09) and 282(3.46). The IR spectrum in CCl₄ exhibited a broad band at 3511 cm⁻¹, which did not change upon dilution and was therefore attributed to an intramolecularly hydrogen bonded OH. The molecular formula C20H23O5N,obtained by elemental analysis, was confirmed by MS, in which molecular ion appeared at m/e 357(86%). Important fragments were also observed at 342(49%),324(49%),314(26%),192(100%) and 190(43%). The pmr(250MHz,CDCl_, \delta) of <u>1a</u> exhibited the characteristic cularine ABX system of protons at C_{α} and C_{1}^{3} , which now appeared at 4.17(H_1 , dd, $J_{1-\alpha\alpha}$: 2.9, $J_{1-\alpha\beta}$: 11.3), 3.34($H_{\alpha\alpha}$, dd, $J_{\alpha\alpha-\alpha\beta}$: 16.1) and 2.91($H_{\alpha\beta}$, dd). In addition, the presence of three methoxyl groups at $4.05(C_5)$ and $3.86(C_4)$, and C_7 , one N-Me at 2.62 and two pairs of ortho coupled aromatic protons(6.60 and 6.74,J:8.6,H₃, and H₂,;6.83 and 7.14,J:8.4,H₆ and H_{c}) clearly suggested an isocularine substitution pattern.⁴ The hydroxyl group was placed at C, on the basis of the observation of a second ABX system:4.58(H, dd after exchange with $D_2O, J_{4-3\alpha}: 2.3, J_{4-3\beta}: 3.9), 3.01(H_{3\beta}, dd, J_{3\alpha-3\beta}: 11.6) \text{ and } 2.80(H_{3\alpha}, dd). \text{ All the above assignments}$ were based on decoupling and NOEDS experiments (Fig. II)⁵.

Comparison of the pmr data of the C_{α} -protons of <u>la</u> with those of sarcocaphine <u>2a</u>⁶ and cularine $2b^3$ shows that both <u>1a</u> and <u>2a</u> have the twist-boat conformation established for ring C in cularine $2b^{3,7}$, with the oxygen atom close to H-1 as depicted in molecular structure 2. Dreiding model analysis reveals that its ring B can have either a half-chair conformation or a distorted form, the two being easily interconverted by simply rotating the $N-C_3-C_4$ bonds, without ring C being involved. The observed coupling constants between H_4 and the neighbouring protons at C_2 in (+)-4-hydroxysarcocapnine reveal that H_d must be quasi-equatorial, thus establishing a quasi-axial position for the hydroxyl group. Accordingly, distorted form A or half-chair conformation <u>B</u> is expected depending on whether the compound has $\underline{syn}(H_1 \text{ and } H_A \text{ on the same side})$ or anti stereochemistry (Fig. I). The fact that (+)-4-hydroxysarcocapnine shows a 2.4% NOE between H_1 and $H_{2\alpha}$ (Fig. I) indicates that it would have the syn stereochemistry shown in A, and structure 1a was therefore assigned to it.

In order to confirm the above configuration at C_A , we have carried out the synthesis of both epimers by means of the oxidation of a suitable precursor at the benzylic position. Treatment of phenolic tetrahydrobenzylisoquinoline 3a with lead tetraacetate⁸ afforded in 83% yield both C,

_	1	2		E .
b,	R¦=Me,	R ³ =OH,	$R^{2}=R^{4}=H$,	R [⊃] =OM€
Ċ,	$R^{T}=H$,	R ² =OH,	$R_{2}^{3}=R_{2}^{5}=H,$	R ⁴ =OMe
<u>d</u> ,	R ¹ =H,	R ³ =OH,	$R^{2}=R^{5}=H$,	R ⁴ =OMe
e,	R ¹ =Me,	$R^2 = OH$,	$R^3 = R^5 = H$,	R ⁴ =OMe
f,	R ¹ =Me,	R ³ =OH,	$R_{2}^{2}=R_{2}^{5}=H$,	R ⁴ =OMe
g,	R ¹ =Ac,	$R^2 = OH$,	$R_{2}^{3}=R_{2}^{5}=H$,	R4=OMe
h,	R ¹ =Ac,	R ³ =OH,	$R^2 = R^5 = H$,	R ⁴ =OMe
i,	R ¹ =Me,	R ² =OAc	$R^{3}=R^{4}=H$	R ⁵ =OMe
j,	R ¹ =Me,	R ³ =OAc	$R^{2}=R^{4}=H$,	R ⁵ ≖OM∈

acetoxyl epimers(<u>3b</u> and <u>3c</u>) in the ratio 1/9.When this mixture was subjected to Ullmann cyclization⁹, followed by basic hydrolysis, it furnished in 92% yield 4-hydroxysarcocapnine <u>1a</u> and its C_4 epimer <u>1b</u>¹⁰, in the same ratio (1/9).The coupling constants between the protons at C_3 and C_4 in the pmr spectrum of <u>1b</u>¹⁰ show that, as in <u>1a</u>, H₄ is also quasi-equatorial.4-Epi-hydroxysarcocapnine <u>1b</u> must therefore have the conformation and stereochemistry shown in <u>B</u>. The fact that the hydroxyl group is quasi-axial in both epimers was further supported by O-acetylation¹¹, which shifted H₄ to lower field by an almost equal amount in both(+1.37 and +1.33 ppm in <u>1a</u> and <u>1b</u>, respectively)¹².

Final confirmation of the relative configurations of the two epimers came from a comparative pmr study of lanthanide-induced shifts.According to the proposed ring B conformations, complexation of the lanthanide reagent via the quasi-axial OH should induce a

Compound	H1 (J in Hz)	ΔH_1	H_4 (J in H_z) ^a
<u>1a</u> (syn)	4.17 dd (11.3, 2.9)	0.43	4.58 dd ^b (3.9, 2.3)
<u>1b</u> (anti)	4.60 dd (12.6, 3.1)		4.57 "t" ^c (3.3, 2.8)
<u>1c</u> (syn)	4.08 dd (11.3, 3.0)	0.36	4.59 dd (3.8, 2.5)
<u>1d</u> (anti)	4.44 dd (12.0, 3.2)		4.55 "t" ^C (J _{app} =2.6)
<u>1e</u> (syn)	4.31 dd (11.6, 3.5)	0.30	4.61 ^d
<u>1f</u> (anti)	4.61 dd (11.6, 3.6)		4.52 "t" ^C (J _{app} =2.6)
<u>1g</u> (syn)	4.21 dd (11.3, 3.2)	0.37	4.61 ^d
1h (anti)	4.58 ^d		4.58 ^d

<u>TABLE 1.</u> Pmr data for epimeric 4-hydroxycularines. $\Delta H_1: \delta H_1(anti) - \delta H_1(syn)$

a.- Coupling comstants, where indicated, were measured on signals due to protons at C₃.
 b.- Broad multiplet before interchange with D₂O. c.-Apparent triplet.d.-Overlapped with signal from the epimer.

<u>TABLE 2</u>. A pmr comparison of the H₁ resonance in cularines and their epimeric 4-hydroxyderivatives. $\Delta H_1: \delta H_1$ (hydroxycularine) $-\delta H_1$ (cularine)

Compound	<u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	4-hydroxycularine	ΔH_1
sarcocapnine <u>2a</u>	4.33	syn, <u>la</u> anti, <u>lb</u>	-0.16 +0.27
cularine <u>2b</u>	4.44	<u>syn</u> , <u>le</u> anti, <u>lf</u>	-0.13 +0.17
cularidine <u>2c</u>	4.26	$\frac{\text{syn}}{\text{anti}}, \frac{1c}{1d}$	-0.18 +0.18

larger shift in H_1 in the epimer with <u>anti</u> stereochemistry.Sequencial addition of known amounts of Eu(fod)₃,did in fact produced very different slopes for H_1 in 4-hydroxysarcocapnine <u>1a(m:1.7)</u> and its epimer <u>1b(m:11)</u>, proving that the natural compound, which is the less affected, has <u>syn</u> stereochemistry.

It is interesting to note that H_4 in <u>1b</u> appears at virtually the same chemical shift as in <u>1a</u>(Table 1), thus ruling out the possibility of making configurational assignments on the basis of differences between the chemical shifts of the carbinyl hydrogen, which is a valid procedure in the aporphine and berberine series². The above observation can be explained as a consequence of the different conformations of ring B in 4-hydroxysarcocapnine <u>1a(syn,A)</u> and its C_4 -epimer <u>1b(anti,B)</u>, in both of which H_4 adopts a quasi-equatorial position. However, a clear cut difference between the chemical shifts of H_1 is observed, which is attributable to the fact that H_1 is affected differently by the nitrogen lone pair in the two epimers. In order to establish whether the above feature might be of general diagnostic value for configurational assignments in 4-hydroxycularines, we have studied the recently described limousamine $\underline{1c}^2$ and its epimer <u>1d</u>, which we have obtained by synthesis¹³. Their pur spectra showed similar coupling constants and ΔH_1 values to those found for <u>1a</u> and <u>1b</u> (Table 1), thus indicating that <u>1c</u> and <u>1d</u> also have conformations <u>A</u> and <u>B</u>. Limousamine, which shows H_1 at higher field, must therefore have the syn stereochemistry 1c.

As Table 1 shows, 7-0-methyl and 7-0-acetyllimousamine¹⁵ (<u>1e</u> and <u>1g</u>) also gave consistent ΔH_1 values, further proving that the configuration at C_4 in 4-hydroxycularines can easily be established on the basis of the chemical shift of H_1 , which resonates at $\delta 4.08-4.31$ in the <u>syn</u> series and further downfield ($\delta 4.44-4.60$) in their epimers. It is noteworthy that the H_1 chemical shift of cularine is roughly half way between the values obtained in its <u>syn</u> and <u>anti</u> 4-hydroxyderivatives (Table 2). This makes possible straightforward assignment of the configuration of a 4-hydroxycularine by simply comparing its H_1 chemical shift with that of parent cularine. If the hydroxyl group is at the β -face(<u>ayn</u> stereochemistry) the H_1 resonance

would appear upfield, while the contrary effect should be observed in the anti series.

As the data in Table 1 clearly reveal, the chemical shift of H_4 is not significantly affected by the stereochemistry or type of subtitution of the cularine nucleus. Therefore, it cannot be used for configurational diagnosis as previously suggested². However, minor differences between the coupling constants of H_4 with neighbouring protons at C_3 can be observed, their values being much closer in the <u>anti</u> derivatives. This causes the signal of H_4 to appear as a broad triplet. On the other hand, the <u>syn</u> derivatives exhibit this signal as doublet of doublets. This can be explained as a consequence of very small differences between dihedral angles of H_4 with protons at C_3 in the <u>syn</u> and <u>anti</u> derivatives. This fact further confirms that epimers at C_4 in 4-hydroxycularines have different ring-B conformations, H_4 being quasi-equatorial in both.

ACKNOWLEDGMENTS.We thank the Comisión Asesora (Spain) for its financial support.

REFERENCES AND NOTES

- For previous work see: J.M.Boente, L.Castedo, D.Domínguez, A.Fariña, A.R.Lera, and M.C. Villaverde, Tetrahedron Lett., 889 (1984).
- 2. D.P.Allais and H.Guineaudeau, Heterocycles 20, 2055 (1983).
- 3. N.S.Bhacca, J.C.Craig, R.H.F.Manske, S.K.Roy, M.Shamma and W.A.Slusarchyck, Tetrahedron 146 / 1986.
- 4. a)M.J.Campello,L.Castedo,J.M.Saá,R.Suau and M.C.Vidal, Tetrahedron Lett. 239 (1982)
 b)J.M.Boente,L.Castedo,R.Cuadros,A.R.Lera,J.M.Saá,R.Suau and M.C.Vidal, Tet.Lett. 2303 (1983).
- 5. D.Neuhans, N.Sheppard and I.R.C.Bick, J.Am.Chem.Soc. 105, 5996 (1983).
- 6. Pmr data(250MHz,CDCl₃, δ) for the ABX system of 2a are: δ_X :4.33(H₁,dd,J_{1- $\alpha \alpha$}:3.2,J_{1- $\alpha \beta$}:11.6), δ_B :3.24(H_{$\alpha \alpha$},dd,J_{$\alpha \alpha \alpha\beta$}:15.9) and δ_A :3.03(H_{$\alpha \beta$},dd).
- 7. H.Shimanouchi,Y.Sasada,T.Honda and T.Kametani, J.Chem.Soc.Perkin II, 1226 (1973).
- 8. H.Hara, H.Shinoki, O.Oshino and B.Umezawa, Heterocycles, 20, 2149 (1983).
- 9. T.Kametani,H.Iida,T.Kikuchi,M.Mizushima and K.Fukumoto, Chem.Pharm.Bull., 17, 709 (1969).
- 11.4-O-Acetylsarcocapnine (<u>1i</u>): pmr(250MHz,CDCl₃, δ):7.15 and 6.84(ABq,J:8.5,H₅ and H₆),6.77 and 6.61(ABq,J:8.6,H₂' and H₃'),5.95(broad t,H₄),4.28,3.30 and 3.10(ABX,H₁,H₀ α and H_{\alpha} β respectively,J_{1- $\alpha\alpha$}3.3,J_{1- $\alpha\beta$}:11.6,J_{$\alpha\alpha$ - $\alpha\beta$}:15.8),3.09(dd,H₃ β ,J₃ β -4:5,J₃ β -3 α :12.7),2.99(dd,H₃ α ,J₃ α -4:4.1),4.04(s,OMe at C₅'),3.88(s,OMe at C₇),3.86(s,OMe at C₄'),2.60(s,N-Me) and 2.12 (s,OAc).

4-Epi-O-acetylsarcocapnine (1j):pmr(250MHz,CDCl₃, δ):7.17 and 6.85(ABq,J:8.6,H₅ and H₆),6.76 and 6.61(ABq,J:8.7,H₂' and H₃'),5.90(broad t,H₄),4.69,3.22 and 2.95(ABX,H₁,H₄ α and H_{$\alpha\beta$} respectively,J_{1- $\alpha\alpha$}:3.1,J_{1- $\alpha\beta$}:12.3,J_{$\alpha\alpha-\alpha\beta$}:15.5),3.24(dd,H_{3 α},J_{3 $\alpha-4}:3.5,J_{3<math>\alpha-3\beta$}:13.5),2.89(dd, H_{3 β},J_{3 $\beta-4}:2.9),4.05(s,OMe at C₅'),3.87(s,OMe at C₇),3.85(s,OMe at C₄'),2.64(s,N-Me) and 2.13(s,OAc).</sub>$ </sub>

- 12.T.Momose and Y.Ozaki, Tetrahedron Lett., 3699 (1976).
- 13.Treatment of cularidine <u>2c</u> with lead tetraacetate followed by Ac₂O/H₂SO₄, as described by Umezawa¹⁴, gave an epimeric mixture of 4,7-diacetoxy-limousamine, which upon acid hydrolysis (acetone, 3N HCl, 80°, 6 h) produced a 2/3 mixture of limousamine <u>1c</u> and its C₄epimer <u>1d</u>.
- 14.0. Oshino, T. Toshioka and B. Umezawa, Chem. Pharm. Bull., 22, 1302 (1974).
- 15. Obtained by an incomplete hydrolysis of the type described in ref. 13.

(Received in UK 5 July 1984)

4576